取消
清空記錄
歷史記錄
清空記錄
歷史記錄
進入21世紀以來,隨著國家經濟的快速發展,化石燃料消耗帶來的環境污染問題也日益突出。當前,隨著“國五”標準的不斷推進以及“國六”標準的即將到來,在汽車制造企業自身努力創新以及燃油成本不斷提高的大環境下,追求汽車發動機的減排增效已經是大勢所趨。
PVD(物理Q相沉積)作為一種逐漸被人們普遍認識和認可的表面處理方法,其給發動機整體性能帶來的改善逐漸顯現其優勢。PVD自身具有的綠色環保無污染排放、工藝溫度低、涂層硬度高、摩擦系數低、結合力強并且化學穩定性好等特點,使其具備應用于汽車發動機零部件的基本條件。
DLC(類金剛石)涂層作為一種較為常見的PVD涂層,和金剛石幾乎擁有一樣的特性。由于其具有高硬度和高彈性模量、低摩擦因數、耐磨損以及良好的真空摩擦學特性,很適合于作為耐磨涂層,因而通過氣相沉積工藝獲得的DLC涂層在眾多有耐磨性以及硬度要求的零件上得到普遍應用。
DLC工藝溫度通常在200攝氏度左右,甚至更低,能夠處理大多數的汽車零件;DLC涂層細膩光滑,自潤滑性好,摩擦系數通常在0.1以下;硬度高,通常在Hv2200以上;尤其適合涂覆在汽車零件表面,承受頻繁持續的G強度摩擦磨損,起到提高零件使用性能、延長使用壽命的作用;另外,DLCZ高可耐受350攝氏度,且耐腐蝕性好、化學穩定性高、結構致密,能夠勝任發動機的內部溫度和工作環境。
我們知道,發動機中的活塞環安裝在活塞側壁的凹槽內,環外圓面緊貼在氣缸內壁。隨著活塞在氣缸內上下往復運動,環面不斷地刮擦氣缸內壁,產生較大的摩擦功損耗,工況比較惡劣。活塞環在發動機中一般起到導向、導熱、密封等作用,因此,圍繞其開展的表面處理技術直接影響到發動機整機的能耗和使用壽命。近些年,國內外很多科研機構、制造企業對活塞環加工工藝和表面處理的探索一直沒有停止。
傳統的主要表面處理技術有滲氮處理、滲碳處理、磷化處理等,目前比較成熟的PVD涂層是多指CrN涂層,在市場上較為普遍。近年來出現的含氫DLC涂層(以下簡稱DLC)和無氫DLC涂層(以下簡稱TaC)作為一種新的涂層材料和技術,因為具有更加優異的性能得到業界的普遍重視。與CrN相比,DLC可以有效減少摩擦,進一步降低摩擦功損耗,重要的一點是更加不易拉缸。
在以非燃油為燃料的新能源汽車發動機(如天然氣和目前在努力推廣的甲醇燃料的發動機)中,DLC涂層的活塞環可以在無潤滑油的干態摩擦條件下起到良好的潤滑和耐磨減磨的作用,這也是目前解決這類活塞環壽命和節能問題的惟一手段。
但是,需要指出的是,傳統的DLC涂層通常不到5微米,很容易被刮擦掉,遠遠達不到發動機的實際使用壽命。無論是在什么樣的零件上使用,一般來說,在滿足零件尺寸要求的前提下,涂層的厚度,尤其是DLC涂層的厚度往往是越厚越好,這樣零件的耐磨性會相應提高。然而,一旦涂層的厚度增加,尤其是DLC層的厚度增加,就會導其內應力增大,影響涂層和基材結合力,導致涂層與基材剝離,這就對涂層的使用壽命和效率產生影響。
因此,厚度及其表現出的耐磨性一直是應用上的一個瓶頸。而TaC作為一種無氫DLC雖然有報導稱能做到20微米,但是現有條件下,其生產成本以及設備的維護保養等方面恐怕很難滿足真正的大規模量產需要,這時候就急需真正適合活塞環的DLC工藝。
DLC涂層目前可以通過很多種技術獲得,但市面上常用的方法分別是磁控濺射、離子束和電弧技術。實現這三種技術手段依靠的硬件——等離子體源(磁控濺射靶座、離子束源和電弧源),其結構開發設計和裝配甚至后續的檢驗和維護保養等,都是由公司自行完成。
應用于活塞環上的DLC主要采用磁控濺射技術和離子束技術多層復合沉積而成。等離子體源在相應的電源和反應氣體的共同作用下,將原材料變成大量微觀帶電的等離子體。這些提供涂層主要成分的等離子體隨著鍍膜設備內產生的電磁場的分布,有規律地做定向運動,Z終在需要沉積的工件位置,逐漸形成宏觀可見的、具有一定厚度的涂層。
其中,磁控濺射技術沉積速率高,穩定性高,均勻性好,結合力強,需要沉積的材料只要制作成相應的塊狀靶材即可安裝在靶座上;在涂層沉積過程中,該技術負責沉積與基材接觸的底層以及介于底層和Z外層的功能層之間的過渡層。離子束技術主要用來沉積功能層,含碳的反應氣體在離子束源產生的強電場作用下被電離成等離子體并沉積到上述過渡層上。
因為是氣體作為碳元素的來源,所以沉積出的涂層結構更為致密,表面更為光滑和黑亮。過渡層的存在能夠有效地提高納米硬度范圍,從而能夠實現功能層厚度的增加,并且可以有效緩沖后功能層帶來的巨大應力,提高復合薄膜與基材的結合力。同時,由于過渡層的表面微觀結構良好,不會破壞DLC自身的粗糙度,從而保證復合涂層具有較低的摩擦系數。
相關新聞